Medications with Anterior Segment Implications: The Good, the Bad and the Ugly

Julie A. Tyler, OD, FAAO -- Associate Professor
College of Optometry -- Nova Southeastern University
Fort Lauderdale, Florida
Thank you for allowing me to join you at this lovely event

- Clinical pearls
Objectives:

- Recognize the clinical benefits of various systemic medications – *with a focus on anterior segment conditions*

- Recognize the anterior segment complications of specific systemic medications

- Understand the various ocular findings & ocular presentations that are suggestive of medication complications
Why the Eye? – anterior segment

Small, lipid soluble molecules of medications can pass freely into aqueous humor

1. Lens
2. Cornea
3. Trabecular meshwork
Why the Eye? – posterior segment

Medications pass through the vasculature of the retinal or choroidal circulation

- Thin, fenestrated vessel walls
- Some drug molecules can pass

Talc retinopathy
Why the Eye?

Three major accumulation sites →

Anterior Segment

1. Lens – Especially,

 Bound drug particles → “photosensitizers”

 “Photosensitizers” = generic term for a drug/substance that can sensitize an organism, cell or tissue to light resulting in changes in the original tissue

2. Cornea

3. Vitreous
Why the Eye?

As an aside -- > In some cases medications are specifically “designed” for Penetration

- An example of ocular medications designed for penetration:
 - Loteprednol versus Prednisolone
Systemic Medications with Anterior Segment Implications

- The “Good”
 - Oral Antibiotics (mostly good, occasionally bad…)
 - Oral Antivirals
 - Carbonic Anhydrase Inhibitor/Diamox
 - Oral Anti-inflammatory medications
 - NSAIDS
 - Steroids → Prednisone
Systemic Medications with Anterior Segment Implications

- **The “Bad”**
 - Oral anti-inflammatory medications
 - Oral Steroids (not just good….also bad)
 - Non-steroidal anti-inflammatory drugs (NSAIDS)
 - Topiramate (Topamax)
 - Oral Contraceptives
 - Amiodarone \rightarrow Anti-arrhythmic
Systemic Medications with Anterior Segment Implications

- **The “Ugly” (kind of like the bad….)**
 - Plaquenil/ hydroxyl-chloroquine
 - Tamulosin (Flomax)
 - Photosensitizers
 - Phenothiazine
 - Allopurinol

- **The “Others”**
 - Digitalis/Digoxin
 - Oral Beta-blockers
 - Tamoxifen
Systemic Medications with Anterior Segment Implications

- When an adverse affects → *May be mild to vision threatening*
 - Often monitor individuals on known medications to prevent or minimize serious consequences

ICD 9 codes:

- **V58.83** Encounter for therapeutic drug monitoring
 - Use additional code for any associated long-term (current) drug use (V58.61-V58.69)
- **V67.51** Following completed treatment with high-risk medication, not elsewhere classified
 - Excludes: long-term (current) drug use (V58.61-V58.69)
The “Good” → Oral Antibiotics

Doxycycline

- Mechanism of Action
 - Antibiotic by design
 - Anti-inflammatory component
 - Inhibitor of matrix metalloproteases → beneficial for recalcitrant recurrent corneal erosions

No kids < 8yo, Preg D
Example for “good”: Rosacea

- Chronic inflammatory condition of the facial skin and eyelids.

- Idiopathic disorder of the sebaceous glands
 - affects forehead, cheeks, chin and nose

- Exact etiology unknown
 - Evidence of genetic predilection
 - More common in:
 - Older patients
 - Women
 - Fair skin (i.e. Northern European)
Doxycycline

- Management:
 - Meibomian gland disease/blepharitis
 - Dry eye syndrome
 - Ocular rosacea

- Dosage and considerations
 - Ocular rosacea with corneal complications --
 - **Doxycycline 100mg po BID for 3 weeks**, followed by 100mg po qd for 3-4 weeks
 - LOWER Dose: Oracea: 40mg PO for patients without ocular involvement
 - Topical **metronidazole** as adjuvant to systemic therapy (Metrogel)
 - Finacea Gel (Azelaic Acid) = mild moderate
 - Mirvaso (Brimonidine Topical Gel) = redness only
Ocular Rosacea

- **TREATMENT CONSIDERATIONS:**
 - *Tetracycline is also effective but ...*
 - *More frequent dosing*
 - *More side effects*
 - Topical & systemic corticosteroids are contraindicated

Aldox convenience kit (2 mo $110)
Nutridox convenience kit (Doxy+Thera)
The “Good” ➔ Oral Antibiotics

Doxycycline ➔ Spoiler alert

- But can also be “bad”…..
- PTC, diplopia, photosensitivity, color vision defects
The “Good” → Oral Antibiotics

Other “Good” for ocular findings →

Cephalosporins

Cephalexin (Keflex) →
- 1-4g/day PO divided
- 10-15% cross rxn pcn allergy

Cefaclor [2nd generation] →
- 250-500mg TID, 500mg (SR=slow release) BID
- 10-15% cross rxn for pcn
The “Good” → Oral AntiVirals

Acute
- HSV
 - Topical vs. Orals
- HZV
 - Orals!!
The “Good” → Oral AntiVirals

HEDS: Determine if oral acyclovir is beneficial for tx of oc herpetic infection & reoccurrence

- Beneficial for reoccurrences of HSV epithelial keratitis?
- Beneficial for reoccurrences of HSV stromal keratitis?
- Beneficial to prevent stromal reaction or iritis if HSV?

Considerations:

- Due to **recurrent nature**, long-term suppressive therapy may be beneficial with **acyclovir 400mg PO bid**
 - *Reduces rate of reoccurrence of HSV epithelial and stromal (esp previous stromal keratitis)*

- No benefit of 3 week course of oral Acyclovir to prevent HSV stromal keratitis/iritis in patients w/epi changes
The “Good” → Oral AntiVirals

Prevention of recurrence from HEDS I

- Determined that use of oral acyclovir after an outbreak of Ocular HSV decreases the risk of recurrence of stromal keratitis
And now…

Herpes Eye Disease Study II (HEDS II)

- Evaluate the primary treatment of HSV with oral Acyclovir
The “Good” → Oral AntiVirals

Acute presentation of HSV keratitis
Acyclovir

- Highly selective anti-viral
 - activity against HSV-1, HSV-2, VZV, and some CMV
- Available: Orally and intravenously
- Oral bioavailability is poor
 - Variable & incomplete absorption from GI tract
- Relatively short half life in plasma

- Treatment of HSV keratitis w/oral acyclovir
 - Wasn’t studied by Herpetic Eye Disease Study I (HEDS I)
 - Evidence suggests it may be as effective as topical
Acyclovir

 - “Antiviral Treatment Thwarts Recurring Eye Problems From Herpes Simplex”
 - Oral antiviral prophylaxis after infection with HSV is associated with a reduced risk for recurring eye problems

- HEDS treatments – continue to be in progress
Valcyclovir/Valtrex

- Pro-drug of Acyclovir
- Available only in oral formulation
- Hydrolyzed by esterases in the GI tract & liver
 - Converting more than 95% to acyclovir
 - Provides significantly greater bioavailability

- Small randomized trial
 - May be an effective treatment for HSV keratitis
 - No large clinical trials have been done to study efficacy & safety of Valtrex in HSV keratitis

- May ALSO be effective in resolving or lessening post-herpetic neuralgia & has a more convenient dosing schedule than traditional acyclovir
Famvir

- Pro-drug of penciclovir
- Active against HSV-1, HSV-2, and VZV (no CMV)
- Well absorbed orally and rapidly converted

- Spectrum of activity and potency similar to acyclovir
- Very long plasma half-life → permits infrequent dosing

- No randomized controlled trials have evaluated the efficacy of Famvir for recurrent HSV keratitis
Dosing for acute HSV keratitis

<table>
<thead>
<tr>
<th>Medication</th>
<th>Dosage Options</th>
<th>Duration</th>
<th>Prophylaxis Dosing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valtrex</td>
<td>1 gram BID x 7 -10 dys</td>
<td>1 gram QD for prophylaxis</td>
<td>Within first 72 hours for HZO: Valtrex 1g TID</td>
</tr>
<tr>
<td>Acyclovir</td>
<td>400 mg 5x dy for 7-10 dys</td>
<td>400 mg BID for prophylaxis</td>
<td>Within first 72 hours for HZO: Acyclovir 800mg 5x/day</td>
</tr>
<tr>
<td>Famvir</td>
<td>500 mg BID for 7-10 days</td>
<td>250 BID for prophylaxis</td>
<td>Within first 72 hours for HZO: Famvir 500mg TID</td>
</tr>
</tbody>
</table>
Cidovir

- **INJECTABLE ANTI-VIRAL:**
 - Active against CMV retinitis

- **BUT....Results in:**
 - **Acute anterior uveitis**
 - Vitritis
 - Hypotony

- When complications arise treat as is typical for uveitis:
 - Topical Steroids
 - Mydriatics
The “Good” ➔
Carbonic Anhydrase Inhibitors (CAI)
Diamox

- Acute: Angle closure management

May reduce IOP by 40-60%
The “Good” →
Carbonic Anhydrase Inhibitors (CAI)

Diamox

- Chronic: Pseudotumor cerebri
The “Good” \(\rightarrow\) Carbonic Anhydrase Inhibitors (CAI)

Diamox \(\rightarrow\) Chronic use of CAI:
- In addition to Pseudotumor cerebri…
- Chronic open-angle glaucoma

Mechanism of Action:
- Reduces rate of aqueous humor formation by direct inhibition of enzyme carbonic anhydrase on secretory ciliary epithelium \(\rightarrow\) reduction in IOP
 - > 90% of CA must be inhibited before IOP lowering occur

Sequel formulation:
- Reduces side effects vs. regular formulation (\\$\\$\\$)
The “Good” → Carbonic Anhydrase Inhibitors (CAI)

Diamox

- Effects are seen in about 1 hr
 - Peak in 4 hours
 - Trough in about 12 hours

- Dosing for Diamox
 - Angle closure: 500 mg PO/IV, followed by 125-250 mg PO q4hr
 - Sustained-release: 500 mg PO q12hr

- Also, a class of medications available for both TOPICAL and SYSTEMIC management of Glaucoma
Oral NSAIDS (OTC & Rx)
 - Uveitis
 - Scleritis
 - Post seg: CME

Steroids → Prednisone
 - Uveitis
 - Scleritis
 - Posterior seg: Optic nerve inflammation

Variable and diverse conditions and treatment regimens based on underlying ocular condition
The “Good” can also be “Bad” ➔ Oral Anti-inflammatory medications

Steroids ➔ Prednisone
- Treat inflammatory & allergic conditions
- Acute & chronic
- Topical, systemic and inhalers (nasal/oral)

Other considerations for steroids …
1) Cataracts
2) Increased IOP
3) Delayed wound healing/secondary infection
4) Other considerations….
Steroids → Prednisone

“Cataractogenic”

- From any type of route: topical or systemic including inhalers → Worse if systemic route
- Mechanism:
 - Drugs may be reacting with amino groups of the crystalline lens fibers
 - Irreversible changes
- Initially tend to be posterior subcapsular (PSC)
 - later, anterior subcapsular region begins
- Children are more susceptible
The “Bad” →
Oral Anti-inflammatory medications

Common ocular complications of steroids

...continued:

- Increased IOP
 - Incidence greater with topical vs systemic
 - Increased aqueous humor formation & reduced outflow
- Consider changing steroid type or dose
- Typically occurs within a few weeks

→ DUREZOL = within a few days
The “Bad” →
Oral Anti-inflammatory medications

Most common ocular complications of steroids...continued:
• Decreased wound healing/exacerbation of herpetic keratitis

Previous example shown of HSV keratitis and blepharitis for pt placed on oral prednisone
The “Bad” ➔
Oral Anti-inflammatory medications

Non-steroidal anti-inflammatory drugs ➔
Indomethacin (Indocin)

- Anterior segment
 - Whorl-like stromal opacities (11-16%)
 - Pts may complain of light sensitivity

- Posterior segment
 - RPE or retinal changes can occur
 - Pseudotumor cerebri with any NSAID
The “Bad” →
Topamax (topiramate)

• Uses: Epilepsy and Migraine Headache
 • Secondary treatment = Headache

• “Angle closure” secondary to choroidal infusion

• Symptoms:
 • Large quick MYOPIC shift
 • Significant increase in IOP
 • Sudden symptoms
 • Within 2 weeks
 • Time frame/management
The “Bad” → Topamax (topiramate)

- Sulfa-based med that induces choroidal infusion, “rotating” structures forward

- “Antero-lateral rotation of the ciliary body”
 - Ant. displacement of the lens-iris diaphragm
 - Leads to myopic shift (“lengthening” focal pt)

- Anterior chamber shallowing
 - Secondary appositional angle closure
Notice the “Parallel” corneal and iris orientation.

Secondary glaucoma from Topamax.
B-Scan Ultrasound of choroidal effusion associated with Topamax leading to secondary glaucoma
The “Bad” ➔
Oral Contraceptives

Anterior segment
- Steepening of the corneal curvature
- Reduced tear secretion
 - Dry eye
 - Contact lens intolerance
The “Bad” →
Oral Contraceptives

Posterior segment/ Microvascular complications
- Retina/ vascular occlusions
- Clotting factors/ Transient Ischemic Attacks (TIA)

Other side effects:
- Migraines
- Pseudotumor cerebri
- Macular edema
A condition with multiple potential “bad guys” → PTC

- Pseudotumor cerebri has been associated with a variety of medications:
 - Antibiotics →
 - Tetracycline
 - Doxycycline
 - Minocycline
 - Steroids
 - Oral Birth Control (OBC)
 - Amiodarone
 - Tamoxifen
 - High dose vitamin therapy → Vitamin A
The “Bad” →
Anti-arrhythmic/ Amiodarone

Treatment for:
- Arrhythmia
 - Atrial fibrillation
 - Ventricular tachycardia

Mechanism of Action:
- Potassium (K+) channel blocker
- Half life may last up to 100 days!

****Cardarone or Pacerone
The “Bad” →
Anti-arrhythmic/ Amiodarone

Characteristics of the medication:
- Photosensitizer w/ a tendency towards lipid storage in lens & cornea
 - Typically does not have an affect on VA
- Almost ALL patients develop keratopathy after 6 months or more….
- Dose and duration dependent drug
- Side effects usually dissipate months after amiodarone is discontinued
 - → GREEN HALOES
The “Bad” → Anti-arrhythmic/ Amiodarone

Anterior Segment Complications

- Crystalline lens
 - Anterior subcapsular changes
 - Posterior subcapsular changes

- Cornea – whorl-like corneal deposits
 - Occurrence
 - As early as six days
 - Most likely in one to three months
The “Bad” →
Anti-arrhythmic/ Amiodarone

Also known as

- Corneal verticlata (Vortex keratopathy)
 - Bilateral, fine, gray or “golden-brown” opacities
 - Create a “whorl-like” pattern
 - Subepithelium
 - Originates BELOW the pupil and swirls outward
 - Central → Spares the limbus
The “Bad” →
Anti-arrhythmic/ Amiodarone

- Cornea – whorl-like corneal deposits
- Main Systemic Differential = Fabry’s disease
The “Bad” →
Other meds causing Vortex Keratopathy

- NSAIDS: Indomethacin, Meperidine
- Phenothiazines
- Tamoxifen

- Chloroquine and Hydroxychloroquine
 - UNLIKE RETINOPATHY, keratopathy bears no relationship to dosage or duration
The “Bad” →
Anti-arrhythmic/ Amiodarone

- Less common but possible are Posterior segment complications:
 - **Optic neuropathy** (1-2% of pts) →
 - Mimics NAION but bilateral
 - Pseudotumor cerebri
The “Bad” → Anti-arrhythmic/ Amiodarone

Management considerations:
- DFE
- Amsler grid and central visual-field screening
- UV blocker (photosensitizer)

Education of Ocular Symptoms
- Possible mild decreased VA (20/25-20/30)
- Glare, halos, foggy vision and color vision changes
- VA may improve if medication D/C but VF defects may not…
Some of “the bad” & “the ugly” → Photosensitizers

A consistent ocular complication of the many medications that have this photosensitizing quality:

✓ Anterior subcapsular lens changes

Some of these medications include:

- Amiodarone
- Chloroquine (and Hydroxychloroquine, aka Plaquenil)
- Phenothiazines
- Allopurinol
The “Ugly” → Anti-malarial/Anti-rheumatic: Plaquenil

- Chloroquine (Arlen)
 - Tends to be more toxic than Hydroxychloroquine
 - Not as commonly used in the US, but...

- Hydroxychloroquine (Plaquenil)
 - Tx for rheumatoid arthritis & lupus
 - Anti-malarial medication
 - Characteristics = Photosensitizer
The “Ugly” → Anti-malarial/Anti-rheumatic: Plaquenil

Anterior segment:

- Cornea = whorl-like “pigment” deposits within corneal epithelium
- Lens = anterior subcapsular lens changes
- Transient & reversible corneal changes → typically when pt receives > 250 mg daily
The “Ugly” →
Anti-malarial/Anti-rheumatic: Plaquenil

Posterior Segment: Retinopathy

- Bull’s-eye maculopathy CLINICALLY starts as fine pigmentary mottling
 - Loss of foveal reflex
 - Differentials include RP and ARMD
The “Ugly” →
Anti-malarial/Anti-rheumatic: Plaquenil

Posterior segment complications….

- **Mechanism:**
 - Inhibition of critical enzymes & interference with the metabolic functions of RPE and photoreceptors
 - *Drugs with an affinity for melanin*

- **Retinopathy:** Management Considerations
 - Risk of irreversible retinal damage: *dose-dependent*
Plaquenil Toxicity

Bulls Eye Maculopathy →
Risks

• > 6.5mg/kg
• > 5 years
• > 60 years
• High fat level
• Renal disease
Posterior segment complications….

- **Retinopathy**: Management Considerations
 - Risk of irreversible retinal damage is **dose-dependent**
 - Risk increases when total cumulative **dose exceeds 300g**; Increased if **daily dose is 6.5mg/kg for longer than 5 years with Plaquinil** (less if chloroquine)
The “Ugly” → Anti-malarial/Anti-rheumatic: Plaquenil

PLAQUENIL SCREENING…..

- **Protocol:**
 - **First five years** – routine exams depending on pt age
 - Annually if the patient is > 60 years of age, is obese, has renal or hepatic dysfunction, history of concurrent macular disease
 - **After five years** – examinations more than once/year

- **Testing (American Academy of Ophthalmal screening):**
 - Baseline exams with color vision & dilated fundus exam
 - Central 10-2 VF (white-on-white) and Amsler grid
 - Fundus photography
 - Spectral Domain OCT/ Fundus autofluorescence

 “Flying saucer” sign on SC- OCT
The “Ugly” → Tamsulosin (Flomax)

Treatment for Benign Prostatic Hypertrophy (BPH)

- **Intraoperative Floppy Iris Syndrome (IFIS)**

 Defined by Chang & Campbell for study purposes, *Journal of Cataract and Refractive Surgery* with the following criteria:

 1. *Intraoperative fluttering and billowing of the flaccid iris stroma caused by normal intraocular currents*
 2. *Propensity for iris prolapse to the phaco and/or side-port incisions*
 3. *Progressive constriction of the pupil during surgery*
The “Ugly” → Tamsulosin

- Intraoperative Floppy Iris Syndrome (IFIS)
 - Also noted by Chang & Campbell pre-operatively:
 - Poor pre-operative pupil dilation
 - Elasticity of the pupil margin
 - We Need To Identify prior to surgery…….
The “Ugly” → Tamsulosin

- Need to:
 - Discontinue medication prior to surgery
 - IFIS can also be seen with other systemic alpha-agonists including:
 - Hytrin
 - Cardura
The “Ugly” ➔ Phenothiazines

Tx for schizophrenia & other emotional disorders

- Original medications in class:
 - Chlorpromazine (Thorazine)
 - Thioridazine (Mellaril)

- Mechanism of complications - multiple:
 1) Photosensitizer
 Anterior subcapsular lens changes
 Corneal pigmentary “deposits”
The “Ugly” → Phenothiazine

2) Ocular symptoms → “anticholinergic” properties

- Blurred vision
 - Decreased accommodation & mydriasis
 - (and possibly, Anterior subcapsular cataracts)
- Other possible issues:
 - Dry eye
 - Macular pigmentary changes

- Transient and dose dependent

- Newer meds: Prozac & Zoloft = dry eye & accommodative issues but less overall
The “Ugly” → Phenothiazine

Anterior segment

- Endothelial and lenticular pigment deposits
- Doses greater than 500mg/day for prolonged periods have higher incidence of irreversible cornea and lens changes
The “Ugly” → Phenothiazine

Posterior segment

- Bulls eye maculopathy with moth-eaten appearance
- Potential permanent VA & visual field loss
- **Doses which exceed 800mg/day** for a few weeks is enough to reduce VA and impair dark adaption

 - Salt & pepper pigmentary changes of the mid-periphery and post pole
 - RPE Pigment clumping
 - Diffuse loss of RPE & choriocapillaris
The “Ugly” →
Thiazide/diuretics

Treatment:

hypertension & congestive heart failure

- Ocular complications
 - Common: Dry eye and changes in tear film
 - Rare: Myopic shifts and band keratopathy
The “Ugly” →
Allopurinol

Treatment for gout

- **Photosensitizer** = anterior subcapsular changes
- Increases the risk of cataract formation if:
 - CUMULATIVE dose exceeds 400g
 - Duration exceeds 3 years

- Cataracts: Cortical and subcapsular changes
The “Others” →
Digitalis/Digoxin

Digitalis (Digoxin)/ Lanoxin

- Ocular symptoms
 - 11-25% of patients experience ocular symptoms
 - Up to 95% develop a type of ocular complication
 - Changes in color vision, visual sensations, flickering vision, blurry vision, photophobia
- Side effect: Reduction in IOP

- Mechanism of action of medications: Cardiac glycoside
 - Congestive heart failure
 - Arrhythmias
The “Others” ➔
Digitalis/Digoxin

Digitalis (Digoxin)/ Lanoxin ➔

- **Mechanism for pathology:** Posterior segment etiology presumed due to High concentrations of medication in the retina and choroid
The “Others” →
Anti-Tuberculosis Medications

- **Rifabutin**
 - Used to treat TB
 - Complications:
 - May present with a unilateral acute uveitis
 - Often with hypopyon
 - Treatment:
 - Stopping medications

- **Isoniazid**
 - Treatment for TB
 - Complications:
 - Optic nerve atrophy
The “Others” →
Anti-Tuberculosis Medications

- Ethambutol:
 - Used in combination with isoniazid and rifampin
 - Toxicity typically occurs between 3 and 6 months
 - Prognosis good if cessation of the medication occurs quickly
 - Minority of patients will suffer permanent vision loss
 - VF defects usually consist of central or centrocecal scotomatas
The “Others” → Oral Beta-blockers

Some considerations for optometry:

- Dry eyes
- “MISDIAGNOSED” normal tension glaucoma
- Masked diabetic symptoms
Topical Medications with Secondary Implications....

Topical Beta-blockers

- Anterior segment
 - The Good ➔
 - Reduction of aqueous formation
 - Reduced IOP
 - The Bad ➔ Reduction of tear secretion
 - Dry eye symptoms
 - Consideration of refit CL
 - The Other ➔ Corneal hypoesthesia
Topical Medications with Secondary Implications....

Topical Beta-blockers

- Systemic complications
 - Breathing problems
 - Bradycardia/Heart palpitations
 - Depression
 - Other systemic considerations
Topical Medications with Secondary Implications....

Prostaglandin analogues

- Anterior segment findings
 - Conjunctival hyperemia
 - Bimatoprost 0.01% developed primarily to reduce the risk of this
 - Possible darkening of the iris
 - Decreased IOP
Topical Medications with Secondary Implications....

Prostaglandin analogues

- Dermatologic/Facial concerns
 - Hair in and around eyes
 - Hypertrichosis
 - Darkening around the eyes

- Posterior segment findings
 - Patients at risk: cystoid macular edema
Fluoroquinolones

Medication: Antibiotics
- Synthetic, broad-spectrum: inhibits DNA gyrase & topoisomerase IV

Anterior segment \rightarrow Toxic to cornea

Systemic considerations
- Achilles Tendonitis
- Also, shoulder and hand
Topical Medications with Secondary Implications....

Fluoroquinolones →

“New”: Zymaxid and Moxeza
versus the “Old”.....
Ocular Summary: Vortex Keratopathy

- Amiodarone
- Chloroquine & Hydroxychloroquine
- Indomethacin, Meperidine
- Tamoxifen
- Phenothiazines
- Fabry disease
Ocular Summary: Dry Eye

- Anti-histamines
 - Claritin, Zyrtec
- Beta blocker agents
- Anti-psychotic agents
- Oral Contraceptives
- Accutaine
Ocular Summary: Subconjunctival Hemorrhages

- Ginkgo Biloba
- Aspirin therapy
- NSAIDS
 - Advil - ibuprofen
 - Indocin - indomethacin
 - Orudis - ketoprofen
 - Aleve – naproxen
- Primary Blood thinners
 - Coumadin
 - Heparin
 - Warfarin

RARE but also possible → Spontaneous anterior chamber hyphema
Ocular Summary: Cataracts

- Amiodarone
- Steroids
- Anti-psychotic agents
- “Statins” for cholesterol
 - Lovastatin
 - Simvastatin
Ocular Summary: Uveitis

- **Rifabutin**
 - Used to treat TB

- **Cidovir**
 - Used to treat CMV retinitis
Ocular Summary: Increased IOP

- Steroids
 - Orals
 - Topical/nasal inhalers
- Topamax
Ocular Summary: PTC

- Oral Birth Control
- Steroids
- Tamoxifen
- Antibiotics →
 - Tetracycline
 - Doxycycline
 - Minocycline
- Vitamin therapy → Vitamin A
Ocular Summary: Optic neuritis

- Viagra/Cialis
- Digoxin/Digitalis
- Amiodarone
Ocular Summary: Retinopathy/Maculopathy

- Hydroxychloroquine (Plaquenil)
- Phenothiazides (Mellaril)
- Tamoxifen
- Canthaxanthin
- Interferon
** A few others...Posterior segment: Maculopathy

- **Tamoxifen**
 - Anti-cancer medication → Breast cancer
 - Selective estrogen receptor modulator
 - Thus, not used for all types of breast cancer
 - Produces a maculopathy....

- Occurs in 6% of pts within 6 months of low dose therapy (~20mg/D)
 - Reversible EARLY, not reversible later
 - **White crystalline macular deposits** → VA decreases secondary to foveal cyst
** A few others...Posterior segment: Maculopathy

- **Canthaxanthin**
 - Oral tanning agent
 - Maculopathy reverses once drug is stopped
A few others...Posterior segment:

Retinopathy

- **Interferon**
 - Used for a variety of diseases including:
 - Multiple sclerosis
 - Hepatitis
 - Other viral diseases
 - Common ocular side effects
 - Cotton wool spots (CWS) near the optic nerve
 - Retinal hemorrhages
 - Macular edema
** A few others...Posterior segment: Retinopathy

Viagra (sildenafil) / Cialis

- Ocular side effects → Dose dependent
 - 50 mg (normal dose) less than 5% chance
 - 200mg have a 50% chance of oc. side effects

- Avoid in RP patients

- General ocular symptoms:
 - Color perception changes
 - “Bluish” tinge (things appear blue)
 - Light sensitivity/ photopsia
** A few others...Posterior segment: Retinopathy

Viagra (sildenafil) / Cialis

- Anterior Ischemic Optic Neuropathy (AION)
 - Non-arteritic
 - Within 24-36 hours
 - A “disc at risk”
** A few others...Posterior segment: Retinopathy

Viagra (sildenafil) / Cialis

- “Viagra-associated” Serous Maculopathy
A few others....eye movements

Dilantin/Phenytoin
- Anticonvulsant
 - Treatment of seizures

- Ocular side effects:
 - Nystagmus & Diplopia
 - Ataxia

- Zyrtec
 - Oculogyric crisis (eyes and lids tonically elevated, neck hyperextended)
** A few others....VF defects

Vigabatrin (Sabril)
 - Anti-epileptic

 - Ocular side effects:
 - Binasal visual field defects

 - Defects persist once treatment is stopped
 → Do not progress
Recognizing “When to Look”

Thorough medical history

- Specific medications
 - Focus in this presentation on anterior and systemic considerations but there are some medications -- some mentioned and others not included (eg, canthaxanthine) that can retinal complications

- Dosage

- Duration of treatment
Recognizing “When to Look”

Toxicity variability

- Dosage versus length of time
- Type of medications
Recognizing “When to Look”

Detecting and Reporting

- Complete evaluation including specialty testing
- Collaborating with other doctors